I remember spending a night on Mount Diablo during a hot spell in August, 1973. Utterly still in the afternoon’s 102-degree heat, the campsite erupted at dusk with a deafening cacophony of chirps, trills, crackles, hoots, whistles, rattles, and distant howls. A scent of sulfur hung in the air, which stayed hot into the small hours. Daylight’s bucolic setting of picnic tables and barbecue grills had turned into something more like “A Night on Bald Mountain” in Disney’s Fantasia, where a nocturnal peak spews out demons.
re-create the vernal pools in which their fairy shrimp, little crustaceans whose eggs almost as unexpected on usually dry land—pended in the water. A closer look revealed appeared to be dozens of tiny squid sus-
short life cycle unfolds. Plants can be sur-
prising here too. I once saw a particularly gorgeous patch of red and blue wildflowers on a ridgetop, and assumed they were Cali-
ifornia poppies and lupines, the commonest spring blooms. A closer look revealed that two less common plants—wind poppies and Chinese houses—had made a mass of color visible from hundreds of feet away. Mount Diablo seems to specialize in surprises. “Devil Mountain,” for example, sounds just like what Spanish missionar-
ies might well have named the area’s most conspicuous peak, after an Indian legend. Native Americans did have many stories about the mountain, which they considered a powerful and mysterious place that had played a major part in the world’s creation. The local Miwok tribelet, the Volvon or Bolbones, had a village southeast of the mountain and hunted and gathered acorns on its slopes (the “moors” they dug into rock formations to grind their crop are still visible in some of the canyons). But they didn’t have permanent settlements on Diablo’s slopes because of its religious significance. And because the mountain is so plainly visible from everywhere in the Bay Area and its environs, many other groups, including the Wintun who lived in the Central Valley to the east, regarded it with reverence and visited it for religious reasons as well.

In the 1950s, the Spanish pioneers Pedro Fages and Juan Bautista de Anza simply named the mountain Cerro Alto de los Bol-
bones, the Bolbones’ Peak. The present name originated some years later from a surpris-
ing mistake. In 1805 or thereabouts, some rebellious Mission Indians escaped from Spanish soldiers in a wood picker thicker just northwest of what is now Concord. The soldiers dubbed the place “el monte de dia-
blo,” the devil’s woodland, perhaps because they thought the devil had helped the Indians escape, or simply to express frustra-
tion. As it happens, monte can mean either woodland or mountain. A Mexican rancho took the name and, somehow, American settlers confused the former meaning with the latter, and started calling the area’s most prominent peak “Monte Diablo.” Europeans did not originally share the reverence the Indians felt for the moun-
tain. The Spanish, and later the Mexicans,

hunted on it and ran their cattle, sheep, and horse herds there as well. By the late 1890s, Americans had begun to scoop up large

flats of sandstone. “In other words, Mount Diablo is not a pile of lava and ash erupted directly from the earth, but in large part a slab of ancient Pacific ocean floor (though not primarily sandstone) that has risen above what is now sea level.” How then did ancient sea level to Mount Diablo’s present summit elevation of 3,849 feet above sea level? The rocks that Whitney described on Mount Diablo’s summit are components of what is now referred to as the Franciscan Complex, an assemblage that appears at many other Bay Area locations as well. These rocks originated far out in the Pacific during the Jurassic and early Cretaceous Periods, beginning about 200 million years ago. Lava from deep ocean spreading zones mixed with material from the earth’s upper mantle to form the ocean floor. (Outcrops of this lava, called pillow basalts, dot the peak today, and a band of metamorphosed mantle material, a slick blue-green rock called serpentinite, runs along the north sides of the summit and North Peak.) As the predecessor of the Pacific Plate (dubbed the Farallon) inched eastward over the ensuing hundred million years, sedi-
diments of marine microor-
ganisms called radiolarians accumulated on the ocean floor and were compressed into sedimentary chert, a flinty rock made up of those silicious skeletons. Eventually, as the eastward movement of the Farallon Plate carried this assem-
blage towards the westward-moving North American Plate, sediments of sand and mud eroded from the continent accumulated on top of it. As the two plates collided, and the Farallon Plate was subducted under the North American, some of the rocks were scraped off and accreted onto the western edge of the continent. By about 20 to 25 million years ago, the Farallon Plate had been consumed beneath the North American and replaced at the plate bound-
ary by the northwest-moving Pacific Plate. At the same time, subduction was replaced by a lateral “strike-slip” movement in which the Pacific Plate slid sideways by the North American Plate, as it is still doing today. About three million years ago, the rela-
tive movement between the plates changed somewhat, adding an element of compres-
sion. It is the squeezing of the crust from this compression that has resulted in the northwest-southeast trending faults and mountainous terrain that characterize central California, including the Diablo Range, as some of the rocks between faults dropped down to become valleys, while others rose to become ridges and peaks. As the mountains rose, erosion gradually removed the older rocks, exposing the rocks that had covered older rocks. According to local geologists, Mount Diablo itself did not begin its exceptional uplift above the rest of the range until about 500,000 years ago. The exposed upper twin summits of Mount Diablo (right) and North Peak (left) tower over the town of Martinez in this aerial view from above the Carquinez Strait.

Birth of a Mountain

Mount Diablo is so prominent, dominating its surroundings for miles around, that it is not surprising that it has sometimes been considered an independent volcano. The wide

view from the summit, east to the Sierra Nevada and west to the Farallon Islands, is also typical of a volcanic peak like distant Mount Lassen, visible from the summit on particularly clear days. When geologists first explored the mountain in the mid-19th century, however, they quickly saw that it is not a volcano. “The material of which it is composed is extremely variable in its litho-

cal character,” wrote Josiah Whitney, head of the California Topographical Survey, in 1865, “but it consists essentially of a central portion of very hard metamor-

MIWOK CREATION STORY

Native American myths about Mount Diablo involve the animals and plants that still inhabit the mountain. According to one story, Mount Diablo was originally an island, from which Coyote and his assistant, Golden Eagle, made the world as we know it. The moun-
tain was also the place where the sun originated, after White-Footed Mouse stole fire from the Central Valley and built a configuration on the summit. Human beings origi-
nated as follows: Coyote, the son of Coyote, lived on the earth side of the mountain with his wife, the rock on which he roosted. She gave birth to Prairie Falcon, who, with the help of his grandfather Coyote, created people, providing them with everything they needed to live. (As told to C. Hart Merriam in 1910, from Beverly Ortiz, “Mount Diablo as Myth and Reality, An Indian History Convoluted,” American Indian Quarterly, Fall 1989)
making it a virtual infant in the geological time scale.

Faulting activity then began to create another of the mountain’s surprises. A basic axiom of geology is that older rocks underlie younger ones. One theory is that a particular deep thrust fault underlies it at a depth of perhaps two or three hundred acres surrounded by low rolling hills and covered with oaks here and there, like a park. And such oaks! . . . one was seven feet in diameter with a head a hundred and thirty feet across.” The little wildflower, with spindly stems from four inches to two feet tall, must have seemed unremarkable in comparison to the massive oak. It was a kind of *Eriogonum* (Latin for “wooly knees,” referring to the cottony stems), a buckwheat family genus of which there are over a hundred species in the West.

Brewer’s dredged specimens were sent east to Harvard, where Asa Gray and Sereno Watson, two of America’s premier botanists, decided the little wildflower was a new species, which they named *Eriogonum truncatum* in 1871. This probably didn’t surprise Brewer either; he’d found many new species in California, then largely unexplored botanically. But as the state became better known, nobody found *Eriogonum truncatum* anywhere except near Mount Diablo, and that might well have surprised Brewer. The species, which came to be called Mount Diablo buckwheat, apparently was endemic (meaning it was found nowhere else) to the area, implying, for one thing, that it might have come into existence here fairly recently. “The native plants of California are some of the most exciting in the world,” says a contemporary botanist, Dr. Peter Raven. “Many of them are of recent origin geologically, and the Mount Diablo buckwheat is clearly one of those.” Indeed, because of its diverse and recently elevated topography, and the climatic conditions arising from that, Mount Diablo is a major center of plant endemism. At least another 14 plant species occur only in the area (including a sunflower, a manzanita, and a globe lily), suggesting that the new conditions caused by its relatively rapid rise over the past half a million years have forced them to evolve and diverge from their more common and widespread relatives. Mount Diablo buckwheat, for example, was found in dry sites, suggesting that it was adapted to the mountain’s lengthening “rain shadow.” Such a situation might give insight into how species in general evolve.

Eriogonum truncatum is unusual even for a local endemic, because it has been Mount Diablo’s rarest and most elusive one. A botanist named Mary Katherine Curran found it near Antioch in 1886, and in 1903 another, named C.F. Baker, found it “locally common along rocky banks” on Marsh Creek Road east of the peak, near where Brewer had collected it. Then nobody seems to have seen it again until the 1930s, when a young botany graduate student at UC Berkeley found some specimens on the slopes of Mount Diablo. As the student, Mary Loolin Bowerman, later explained, she “hadn’t thought of Mount Diablo as being anything special” when her professor at Berkeley assigned her to study it in 1930. He chose her because she happened to have a car. As she explored the mountain in the ensuing years, however, Bowerman grew fascinated with the beauty and complexity of its plant life. She visited it over a hundred times as a student and collected many hundreds of plant species. In 1932, she surprised her thesis adviser, the eminent botanist Willis Lynn Jepson, by proposing to write her doctoral dissertation on the entire mountain’s vegetation and the way it interacted with the environment. Bowerman approached the mountain’s vegetation not just as an assemblage of plant species to be catalogued individually, but as a system of plant communities, each with typical members and conditions. Such an “ecological” approach to botany was relatively new at the time. “During my studies, I became more interested in ecology than in straight identification,” she recalled. “I kept track of which plants were growing together because it was all so completely fresh to me . . . soon realized that Mount Diablo is a unique geographical location. It’s part of the inner Coast Ranges yet is subject to coastal influence owing to the absence of high mountains to the west over the bay. It’s also a pivotal link between the differing vegetation units of the north and south Coast Ranges. The broad variations in temperature, rainfall, wind exposure, and altitude account for its wide variety of plant life.” Completed in 1936, the thesis was expanded and published as *The Flowering Plants and Ferns of Mount Diablo, California*, in 1944. The book has been a major reference source on the mountain’s botany and natural history ever since.

Bowerman noted that the area’s vegetation had been very different before Mount Diablo arose. Fossils uncovered nearby show that a forest of holt cypress and tulip trees still found in today’s Southeast swamps, grew here in the Miocene epoch (23 to 5 million years ago). Some plants typical of that ancient forest remain, deciduous trees like box elder and sycamores, but as the land gradually became drier and hillier, other plants moved in as well, creating the intricate mosaic of life that covers the mountain today.

As it rose dramatically over the past half a million years, Mount Diablo became a kind of ecological crossroads, where different vegetation units from the north and south Coast Ranges meet. This view of North Peak from Chaparral Spring (a 333-acre property near Clayton formerly owned by Jams Mount Diablo) shows the mosaic of Diablo’s plant communities, including chaparral (in foreground and on the peak), oak savanna (left and right), and grasslands (center).
because of its central location and diverse topography, organisms that occur north to the rain forests of British Columbia intersect with species that are also found in the deserts of Mexico. Western good turtles, red-legged frogs, and various thrushes like those in Redwood National Park coexist on the mountain with tarantulas, roadrunners, and horned and western whiptail lizards, like those in Joshua Tree National Park. On the September evenings when tarantulas roam in search of mates, it might almost be desert. On the nights in March when red-legged frogs look for breeding pools, it can be so wet that it might almost be rain forest.

The Mountain’s Mosaic

Bowerman divided this mosaic into plant “communities” based on the varied conditions. The riparian community, growing along streams in places like Sycamore and Car里 Canyon, has deciduous trees such as sycamore, bigleaf maple, and cottonwood. Sun-dappled grapevines twine overhead, and shrubs like snowberry cover the ground. Almost as lush, and much shadier, is what Bowerman called the broadleaf-sclerophyll community occurring in rockier, drier areas (such as at Castle Rock and Rock City), and also in park-like savannas where scattered valley oak, blue oak, and black oak—interspersed with gray or Coulter pines—grow amid grasses and wildflowers (the ridgetops along the Burma Road trail or near Mitchell Canyon). Bowerman’s other two communities occur in places where trees have trouble growing. Grassland gives the mountain its fireworks of poppies and lupines in spring and its golden glow in summer. On Long Ridge, the serpentine soil helps to keep out exotic grasses. Bald Ridge and Donner Canyon are also excellent grassland sites for wildflowers. Chaparral occurs in places too dry, steep, and rocky even for grassland, covering most of the mountain’s south-facing slopes with a shaggy carpet of shrubs that would be desert-like if it weren’t so dense. Chaparral may look monotonous at first glance, but it has a wealth of characteristic species. Its shrubs flower through-out most of the year, from manzanita in early winter, through aromatic buckbrush in spring, to chamise in the heat of summer. These flowers, from the white of chamise and buckbrush to the neon magenta of chapparral pea and electric blue of California lilac, can be so profuse that they color entire slopes and perfume the air. But even that diversity of plant communities doesn’t quite capture the complexity of the mountain’s ecology. The gradations and transition zones between them become their own distinct habitats. As it happened, the elusive Mount Diablo buckwheat appears to depend on one such boundary area, between grassland and (continued on page 10)

The summit’s exposed, rocky terrain challenges other plant communities, forcing them to adapt. Their foliage shifts and whispers uneasily in the relentless summit wind. Only a few riparian plants like bigleaf maple have been able to grow along the steep creeks, which arevirtual waterfalls in spring, but dry stony staircases for most of the year. The broadleaf-sclerophyll community occupies shadiy spots, but wind and shallow soil stunt the laurels and camp-y oke oaks into a dwarf forest. The deciduous oak-pine com-munity occurs as scattered trees, with drought-resistant pines and southern desert regions, but it is quite at home here along the Fire Interpretive Trail near the summit of Mount Diablo. (below) The riparian corridor along Little Pine Creek is shaded by sycamore, oak, and bigleaf maple trees.

The Mountaintop Loop Hike

This strenuous 6.5-mile hike circumambulates Mount Diablo’s summit, and traverses many of the mountain’s geological and botanical features. When I was there in early April 2006, the air was startlingly clear, and the snowy masses of the Sierra Nevada and Mount Lassen floated all along the eastern and northern hori-zons, while the wetty realm of the Delta seemed close enough to touch. The clear air also provided a stunning view of the urbaniza-tion that besets the mountain, not only to the west, where most towns are, but on all sides, including the Central Valley, where massive blocks of new housing looked odd among bright green fields and pastures.

The hike starts at the summit’s lower parking lot, and follows the Summit Trail southeast to Devil’s Elbow, then keeps turning left around the summit via the North Peak Trail to Prospector’s Gap, the Bald Ridge Trail, the Meridian Ridge Road, and Deer Flat Road to Juniper Camp, returning to the parking lot via the Juniper Trail. (There is a total climb of 4,820 feet, much of it steep and rocky.)

The trails pass over the Jurassic and Cretaceous deposits that Whitney identified in 1865. Tectonic pressures have squeezed and twisted the rocks into such tortured shapes it is hard to imagine their origin on the flat Pacific ocean floor. Impressive red outcrops of radiolarian chert dominate at Devil’s Pulpit. Slick green serpentine along the Deer Flat trail originated when plate movements scraped up mantle material and mixed it with ocean water before squeezing it upward toward the surface. Undersea eruptions created the greenish, dome-shaped pillow basalt visible along the Juniper Trail.

Myriad variations of chaparral occur on the rocky, exposed summit, so the hike is a great chance to get acquainted with it and its odd creatures. When I started through the heavy brush along the Summit Trail, a California thrasher ran in front of me, a shy, long-billed bird that lives only in chaparral. It sings like the mockingbird, to which it is closely related. There’s also a chance of seeing rarer creatures like the endangered Alameda whipsnake, an extraordinarily slender snake that flashes past almost before you can see it. Shrub species are surprisingly diverse, from scattered clumps of California sagebrush, creambush, and poison oak to dense, tall tangles of scrub oak, silktassel, and buckbrush. Another common shrub in the chaparral on the peak’s north side is hop bush, a mildly allergenic relative of poison oak with hop-shaped fruits and lime-green, tripartite leaves.

From the summit on a clear winter day, you can see the snow-capped Sierra Nevada floating over the flat expanse—and encroaching subur-urbs—of eastern Contra Costa and the Central Valley.

THE SUMMIT LOOP HIKE
Brought seeds of aggressive weeds such as wild oats; these grew so thickly that they replaced native grasses and turned large areas in just a short time. Grazing and weeds increased when Americas homesteaded the mountains. Settlers also cut trees for firewood and burned chaparral to enhance grazing. Miners dug up large areas in search of products like lime, coal, and mercury. Many homesteads failed because of the semiarid climate, but as communities around the mountain grew in the early 1900s, entrepreneurs and officials expected that Mount Diablo’s natural landscape would give way to profitable urbanization sooner or later. It became a popular resort destination after the building of two stagecoach roads to the Mountain House Hotel below the summit in the 1870s. Between 1910 and 1917, an entrepreneur named Robert Noble Burgess acquired some 20 square miles in the area, realigned the old stage roads for autos, and extended them to the summit. (Those three road sections, which Burgess called the Mount Diablo Scenic Boulevard, were the origin of the park’s present North Gate and South Gate Roads.) Burgess hoped to build a huge housing estate on his land, and in 1914, William Randolph Hearst, the newspaper magnate, contemplated buying 1,200 acres and building a castle on the mountain. Hearst built his castle at San Simeon in 1919. Another acquisition by proliferating freeways, malls, and bedroom communities. Subdivisions started to devour the fields and orchards of the surrounding valleys, and as growth accelerated with the arrival of BART in the 1970s, they spread into the canyons and up to the ridges. One proposed subdivision alone, Blackduck Ranch below Sycamore Canyon, was to chipping in 25 cents apiece to get the muni- tions mailed.

Preserving the Whole

However, other factors began to resist pressure for urban growth on the mountain. The Caldecott Tunnel opened in 1940, separating the East Bay from the South Bay. The La Costa Tunnel opened in 1941, and other wildlife such as eagles, hawks, owls, falcons, kit foxes, and badgers. Pressure for urban growth on the mountain remained comparatively light through the 1940s, but the situation changed after World War II. The Caldecott Tunnel opened in 1941, and the economy and industry grew. Miners dug up large areas in search of products like lime, coal, and mercury. Many homesteads failed because of the semiarid climate, but as communities around the mountain grew in the early 1900s, entrepreneurs and officials expected that Mount Diablo’s natural landscape would give way to profitable urbanization sooner or later. It became a popular resort destination after the building of two stagecoach roads to the Mountain House Hotel below the summit in the 1870s. Between 1910 and 1917, an entrepreneur named Robert Noble Burgess acquired some 20 square miles in the area, realigned the old stage roads for autos, and extended them to the summit. (Those three road sections, which Burgess called the Mount Diablo Scenic Boulevard, were the origin of the park’s present North Gate and South Gate Roads.) Burgess hoped to build a huge housing estate on his land, and in 1914, William Randolph Hearst, the newspaper magnate, contemplated buying 1,200 acres and building a castle on the mountain. Hearst built his castle at San Simeon in 1919. Another acquisition by proliferating freeways, malls, and bedroom communities. Subdivisions started to devour the fields and orchards of the surrounding valleys, and as growth accelerated with the arrival of BART in the 1970s, they spread into the canyons and up to the ridges. One proposed subdivision alone, Blackduck Ranch below Sycamore Canyon, was to chipping in 25 cents apiece to get the muni- tions mailed.

Preserving the Whole

However, other factors began to resist pressure for urban growth on the mountain. The Caldecott Tunnel opened in 1940, separating the East Bay from the South Bay. The La Costa Tunnel opened in 1941, and other wildlife such as eagles, hawks, owls, falcons, kit foxes, and badgers. Pressure for urban growth on the mountain remained comparatively light through the 1940s, but the situation changed after World War II. The Caldecott Tunnel opened in 1941, and the economy and industry grew. Miners dug up large areas in search of products like lime, coal, and mercury. Many homesteads failed because of the semiarid climate, but as communities around the mountain grew in the early 1900s, entrepreneurs and officials expected that Mount Diablo’s natural landscape would give way to profitable urbanization sooner or later. It became a popular resort destination after the building of two stagecoach roads to the Mountain House Hotel below the summit in the 1870s. Between 1910 and 1917, an entrepreneur named Robert Noble Burgess acquired some 20 square miles in the area, realigned the old stage roads for autos, and extended them to the summit. (Those three road sections, which Burgess called the Mount Diablo Scenic Boulevard, were the origin of the park’s present North Gate and South Gate Roads.) Burgess hoped to build a huge housing estate on his land, and in 1914, William Randolph Hearst, the newspaper magnate, contemplated buying 1,200 acres and building a castle on the mountain. Hearst built his castle at San Simeon in 1919. Another acquisition by proliferating freeways, malls, and bedroom communities. Subdivisions started to devour the fields and orchards of the surrounding valleys, and as growth accelerated with the arrival of BART in the 1970s, they spread into the canyons and up to the ridges. One proposed subdivision alone, Blackduck Ranch below Sycamore Canyon, was to chipping in 25 cents apiece to get the muni-
Conservationists have been working to protect the unique biodiversity of Mount Diablo State Park. Recent efforts have included the reintroduction of peregrine falcons, which had disappeared from the park due to habitat loss and pesticide use. The falcons have now returned to Mount Diablo, thanks to the efforts of the Save Mount Diablo organization and other conservation groups. The reintroduction of the falcons is seen as a significant step in restoring the park’s ecological balance.

Mount Diablo's woodlands and canyons provide habitat for a fantastic variety of raptors, from kestrels to golden eagles (of which the northern Diablo Range hosts perhaps the world’s densest populations). The park is also home to several rare species, including the California condor. Conservation efforts have focused on preserving these areas for future generations.

A PLACE FOR RAPTORS

Mount Diablo’s woodlands and canyons provide habitat for a fantastic variety of raptors, from kestrels to golden eagles (of which the northern Diablo Range hosts perhaps the world’s densest populations). In the 1950s, however, the mountain lost one of its key raptor species when peregrine falcons, which had nested on cliffs and in the park’s canyons, were extirpated due to DDT-related eggshell thinning. Peregrines were particularly vulnerable to eggshell-thinning because they prey mainly on birds, which, because of their insect diet, tend to have high pesticide concentrations in their tissues.

Although contamination levels decreased after DDT was banned in 1972, peregrines had become too scarce to return to Mount Diablo on their own. In 1989, Gary Buechley, a wildlife biologist and Save Mount Diablo volunteer, led an effort to return nesting peregrines to the mountain. In alliance with other groups, including the Lindsay Wildlife Museum, several Peregrine Project volunteers set up cliff-nesting platforms and began the reintroduction process. In the late 1990s, reintroduced peregrines had nested at Mount Diablo, and the population has since returned to its historic levels.

These reintroductions have been successful. The presence of peregrines has helped to control populations of other predators such as ravens and crows. The reintroduction of peregrines is an example of how conservation efforts can have a positive impact on the natural world. The story of Mount Diablo’s peregrines is a testament to the power of collaboration and the importance of protecting our natural heritage.

One of the peregrine falcons “reintroduced” to cross-foster a peregrine falcon chick at Mount Diablo State Park, seen here taking off from its nest site at Castle Rock. (Photo by Scott Hein, www.heinphoto.com)
Mary Bowerman died in August 2005 at the age of 97, but not before her life’s work—like the life of the mountain itself—took another surprising turn. Her book about Mount Diablo’s vegetation had gone out of print, so in the mid-1990s, she began collaborating with Barbara Ertter, a botanist at U.C. Berkeley’s Jepson Herbarium, on an updated and expanded version (published by the California Native Plant Society in 2002). The project involved intensive new exploration of the mountain’s vegetation, and collectors found a number of plants that had not yet been recorded there. But they also failed to find some that had been collected formerly, including Mount Diablo buckwheat.

Exploration continued after the book’s publication, however. In May 2005, Michael Park, a UC Berkeley botany graduate student collecting on land that Save Mount Diablo had previously protected, found a little pink annual wildflower growing between grassland and chaparral. “I was looking at a common plant that likes rock outcroppings and wondering why it was growing on sand when I realized that I was surrounded by early blooming buckwheat,” Park recalls. “I decided I needed a closer look since I didn’t recognize it and then realized this was something new. Once I realized it was Mount Diablo buckwheat, I was in shock . . . It’s a surprisingly dainty plant once you see it in the field, because it’s so celebrated in the botanical community that it had grown in my imagination. It’s only because I stopped and was moving very slowly that I even realized it was there.” Ertter agreed with Park’s identification, and other botanists confirmed it.

As it happened, news of a possible sighting of an ivory-billed woodpecker—believed extinct for decades—in an Arkansas swamp had emerged three weeks earlier, so the media were primed to take notice of this latest return from apparent extinction. National Public Radio interviewed Barbara Ertter and Seth Adams, SMD’s Land Programs Director. “With all the normal controversies and land battles,” Adams said, “what great news that this beautiful and unique wildflower has managed to survive. When I visited the site I was struck by how fragile the plant is. There are fewer than 20, it’s an annual and reseeded and dies each year, but has managed to survive.”

The species’ future is far from certain, in part because botanists aren’t sure how it has managed to survive. One theory involves rabbits, which hide from predators in chaparral’s dense brush and venture into adjacent open grassland to feed. By thinning exotic weeds at the chaparral’s edge, the rabbits may be helping out the rare natives. But science still knows little about protecting endangered species like the buckwheat. Although propagating them in a nursery can preserve their genetic material—botanists at UC Berkeley Botanical Garden have announced the successful flowering of plants grown from seeds collected in 2005—they can’t really survive unless viable populations continue to reproduce in their natural habitat. The plant’s reappearance on the mountain in the spring of 2006 is certainly good news, but not a guarantee.

So it keeps coming back to the need to preserve habitat. “Our first priority,” says SMD Executive Director Ron Brown, “is to make sure Mount Diablo is not cut off from the rest of the Diablo Range to the south, so that the area retains healthy breeding populations and an enriched gene pool of plants and animals. Second, although SMD has done a good job of defining the outer edges of the habitat we want to protect, we need to fill in those limits with large enough swaths of protected land to sustain wildlife and provide visual and recreational amenities.” Brown says SMD has benefited from good relations with landowners, many of whom share its values and goals. “We believe that our ancestors would be very proud of us for working with Save Mount Diablo,” says Karen Mangini, one of the former owners of Mangini Ranch. “It is our responsibility to protect this land for others. We want future generations to enjoy what we had, we want them to be able to roam among the land’s friendly confines as we have done . . . We hope that the work we are doing with Save Mount Diablo will encourage other farming and ranching families in this beautiful valley to do likewise.”

SMD estimates that the amount of protected land in this area will have to double before its work is finished. Considering the obstacles besetting conservation, this might seem a long shot. California didn’t pass a major park bond issue between Proposition 70 in 1988 and Propositions 12 and 40 in 2000 and 2002. These funds have quickly been spent; local land prices are jumping dramatically, and State Parks is having trouble managing its parks let alone expand them. “Urban pressure for large scale developments in the foothills has never been greater,” says former board president Bob Doyle, now General Manager for the East Bay Regional Park District.

But Mount Diablo still specializes in surprises, as I found when I recently visited Round Valley, a relatively new regional preserve adjacent to Morgan Territory southeast of the mountain, and very near where Brewer first found Eriogonum truncatum. Since it is in the peak’s rain shadow and has desert species like kit foxes and roadrunners, I anticipated a somewhat forbidding place. But it was a very wet April, and Round Valley was like yet another sequence from Disney’s Fantasia, the “Pastoral Symphony.” Meadowlarks sang in emerald turf spangled with buttercups; flocks of bluebirds, goldfinches, and warblers thronged saks almost as stately as those Brewer described in 1862.

I didn’t see Mount Diablo buckwheat, but I did see something that surprised me, a big dark green and pink woodpecker—most certainly a Lewis’s woodpecker. This is the West’s most unusually colored woodpecker. Captain Meriwether Lewis, who discovered it for science in 1803, aptly described its breast plumage as “a curious mixture of white and blood red which has the appearance of having been artificially painted or stained that color.” The species also behaves in un-woodpeckerlike ways, flying straight ahead like a crow (most woodpeckers have an arcing flight) and hawking insects from a perch. Like Mount Diablo buckwheat, Lewis’s woodpecker has specialized habitat needs and is threatened by exotic species and human activities. Starlings appropriate its nest holes in large, scattered trees, and people cut the trees.

I don’t recall seeing the species anywhere else in the Bay Area in over three decades of hiking here. If Round Valley had become a landfill as was proposed in the 1980s, I might never have seen it here. Lewis’s woodpecker lives from central British Columbia to northern Mexico, and east to the Great Plains, but it is uncommon and local enough throughout its range that seeing one is always a thrill. Such sightings are good indicators of the biodiversity that Save Mount Diablo and its allies are trying to protect. The more linked habitat there is in an area, the more chance there is that an unusual species like a Lewis’s woodpecker or a San Joaquin kit fox—or even a Mount Diablo buckwheat—will still be there to surprise and delight us for a long time to come.
Organizations

Save Mount Diablo

Save Mount Diablo was founded in 1971 to expand the existing state park, which then covered less than 7,000 acres and only one of the mountain’s peaks. Today, Save Mount Diablo continues to protect and connect natural lands on and around the mountain by preserving, defending, and restoring the Diablo wilderness for people and wildlife. It works to preserve natural lands through acquisition, by purchasing available properties, and through cooperative efforts with partner organizations. And it defends open space in eastern and central Contra Costa and eastern Alameda Counties. Once land is protected, staff and volunteers restore native habitat prior to its transfer to a public agency for permanent preservation and public use. Save Mount Diablo also offers numerous recreational outings and events throughout the year, inviting people to appreciate, explore, and enjoy the beauty and biodiversity of the Diablo wilderness.

Save Mount Diablo works in partnership with Mount Diablo State Park, the East Bay Regional Park District, Contra Costa Water District, Contra Costa County, and other public and private landowners to achieve these goals. Mount Diablo’s protected lands now cover 110,000 acres in more than 40 parks and preserves. However, tens of thousands of acres are still at risk of being lost to development, so Save Mount Diablo continues its work to reassemble the Diablo wilderness with the support of its partners and donors. Save Mount Diablo’s semi-annual newsletter, Diablo Watch, contains information about the mountain’s natural and cultural history as well as the organization’s activities. Find current and back issues, and more information about upcoming activities, at SaveMountDiablo.org.

1901 Olympic Boulevard, Suite 320, Walnut Creek, CA 94596 / (925)947-3535 / SaveMountDiablo.org

Mount Diablo Interpretive Association

The Mount Diablo Interpretive Association (MDIA) is a nonprofit volunteer cooperating association dedicated to working with the state Department of Parks and Recreation in interpreting Mount Diablo for the public. MDIA operates the visitor centers at the Summit and at Mitchell Canyon and publishes numerous resources on Mount Diablo, including The Mount Diablo Guide (2nd edition) and Mount Diablo Wildflowers, all of which can be ordered online at mdia.org.

P.O. Box 346, Walnut Creek, CA 94597-0346 / (925)927-7222 / mdia.org

Resources for Recreation

Diablo Regional Trail Map, published by Save Mount Diablo, is the only trail map to include all of the parks, open space preserves, and trails in the Diablo wilderness. It can be purchased at SaveMountDiablo.org.

Hike & Thrive is a program of free guided hikes on and around Mount Diablo; information at SaveMountDiablo.org under “Activities.”

Mount Diablo Audible Hiking Guides are free downloadable self-guided hikes on and around the mountain. Like having a naturalist in your pocket, these lively podcasts combine interviews, music, and natural sounds from the trail and are downloadable to a computer or a mobile MP3 player from SaveMountDiablo.org under “Activities, Hikes & Trails.”

Camping on the mountain is available at Mount Diablo State Park’s Juniper, Live Oak, and Junction campgrounds. To make reservations, call (800) 444-7275 or visit reserveamerica.com.

Other parks around Mount Diablo include:
- Several East Bay Regional Park District units: Diablo Foothills, Sycamore Valley, Morgan Territory, Round Valley, Black Diamond Mines, Vasco Caves, and Brushy Peak. (ebparks.org)
- Los Vaqueros Reservoir, operated by the Contra Costa Water District (ccwater.com/losvaqueros/)

There are also numerous local parks and open space preserves that connect to trails on the mountain.